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metal ions (cesium and iron). The dopant concentrations were varied between 1 and 3 mol%. Influence
of the dopants on the structural perfection was studied using the X-ray diffraction method. Effects of the
dopants on the phase transition temperature were examined using the impedance analytical method.
The optical properties of the as-grown crystals were studied using a UV spectrophotometer. The sur-
face morphology and the presenting defects were also studied by the chemical etching method and the
obtained results have been presented.
rystal growth
ptical properties

. Introduction

The crystal of many inorganic derivatives of amino acids pro-
ides excellent crystals such as triglycine sulphate, l-arginine
hosphate accepted for the fabrication of devices [1]. Glycine phos-
hite (GPI), one of the hydrogen bonded ferroelectric single crystals,
elongs to this family of crystals. The GPI crystal undergoes a con-
inuous ferroelectric–paraelectric phase transition at 224.7 K [2].
n the paraelectric phase, GPI belongs to monoclinic crystal struc-
ure with P21/a space group when it turns to the ferroelectric phase,
he crystal system remains the same but the phase group changes
rom the centrosymmetric to the non-centrosymmetric P21 phase
roup [3]. Many practical devices using ferroelectrics require a
hase transition temperature above or closer to the room temper-
ture. The value of the phase transition temperature when it shifts
owards to the room temperature increases the utility of GPI sin-
le crystals for the fabrication of the devices. In the GPI crystal,
erroelectrics appear due to the ordering of protons in the inter-
hosphite hydrogen bonds. Hence, a large isotopic effect can be
xpected by isotopic substitution for hydrogen in the GPI crystal
hich drastically increases the phase transition temperature above
he room temperature. This improves its suitability for high sensi-
ive pyroelectric sensors capable of working at room temperature
4].
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Subsitutional or interstitial impurities in the host lattice leads
to significant changes in the properties of the pure TGS crystals
[5–7]. The Doping of cobalt (II) phosphate in TGSP crystal resulted
in good quality crystals with a stable domain structure [8]. Doped
TGSP crystals with amino acids such as l-alanine (l-ATGSP) and
l-asparagine (ASP-TGSP), were investigated for further improve-
ment in their pyroelectric property [9]. The phosphoric acid doped
TGS resulted in an increase in the pyroelectric coefficient than pure
TGS and a shift in the phase transition temperature was observed
[10]. Crystal perfection and performance of ZTS was considerably
improved by the organic dopant [11]. Previously glycine phosphate
doped GPI [12], urea and thiourea doped GPI [13,14] have been
reported. In this direction, attempts were made to dope GPI crys-
tal with an organic complexing agent and various metal ions to
improve the phase transition temperature. Doping efforts on the
growth aspects, structural perfection, phase transition tempera-
ture, and optical properties were studied by conducting various
characterization techniques. Presenting defects of the grown crys-
tals were examined using the chemical etching method and the
obtained results have been presented.

2. Experimental procedure

The dopants were taken in the form of nitride (lanthanum), carbonate (cesium),
chloride (iron) and synthesized salts (allylthiourea) were added directly to the sat-
urated solution. The materials were synthesized using the appropriate addition
of dopants such as rare-earth ion (lanthanum, 3 mol%), organic complexing agent

(allylthiourea, 10 wt%), alkali metal ion (cesium, 1 mol%) and transition metal ion
(iron, 1 mol%) in different ratios (molar and weight percentage). The recrystalli-
sation process was adapted for further purification of the starting materials. Low
temperature solution growth method was used for the crystal growth experiments
and the growth runs were preformed in an aqueous solution. The grown crystals
were named as LGPI, AGPI, CGPI and FGPI for lanthanum-, allylthiourea-, cesium-
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Fig. 1. Doped GPI crystals grown

nd iron-doped GPI crystals, respectively. The structural perfection of the as-grown
rystal specimens were identified with the X-ray rocking curve using a high res-
lution multicrystal X-ray diffractometer. The ferroelectric behaviors of the grown
pecimens were analyzed using HP impedance gain-phase analyzer; model HP in the
iquid N2 ambient. Optical transmittance spectra were recorded using a Shimadzu
V–vis spectrophotometer. The etching microstructures were examined using an
ptical microscope (Leitz metallux-II) in the reflection mode.

. Results and discussions

Good quality single crystals of pure and doped GPI were grown
y controlled solvent evaporation technique and the grown crys-

als are shown in Fig. 1. It was anticipated that the dopants may
o to the interstitial sites and not disturb the crystal lattice. Crystal
erfection analysis is an important study to evaluate the device per-
ormance of the grown crystals. The rocking curves for the all doped
PI crystals are shown in Fig. 2. A similar experimental condition
w solvent evaporation technique.

[15] was adapted for recording the rocking curves. The full width
at half maximum (FWHM) values for AGPI, LGPI, CGPI, and FGPI
specimens were 16, 30, 15, and 34 arc s, respectively which is more
than that corresponding to the pure GPI crystal [15]. The broaden-
ing of diffraction curve revealed the incorporation of dopants into
the crystalline matrix. The lower FWHM values of each main peak
shows that the grown crystalline perfection is reasonably good and
the all grown specimens were free from structural grain bound-
aries except the FGPI crystal. In LGPI, the scattered intensity was
much more in the negative direction in comparison with the pos-
itive direction which was the reason for the asymmetry nature of

the obtained diffraction curve. This feature clearly indicates that
the crystal contains predominantly vacancy type of defects than
interstitial defects [16]. The lattice around these defects undergoes
tensile stress and the lattice parameter ‘d’ (interplanar spacing)
increases which leads to more scattered intensity. Generally, this
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Fig. 2. Diffraction curves recorded for dope

ype of a defect may be arises due to the fast growth. Because, the

rowth rates differ for the various planes of the grown crystals. It is
bvious that the FGPI crystal diffraction curve contains an addi-
ional peak, which is 25 arc s away from the main peak, depicts
he presence of an internal structural at very low angle (tilt angle

ig. 3. Variation of dielectric permittivity with temperature of doped GPI crystals.
single crystal for (0 2 0) diffracting planes.

˛ < 1 arc min), the grain boundary [17] whose tilt angle (misorien-
tation angle between the two crystalline regions on both sides of
the structural grain boundary) is 25 s from its adjoining main crys-

tal block. The FWHM of the main crystalline block and the very
low angle grain regions were 34 and 122 arc s. The relatively low
angular spread of around 400 arc s of the diffraction curve and the
low FWHM value of the main peak reveals that the crystalline per-

Fig. 4. Optical transmittance spectrum of doped GPI single crystals.
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Fig. 5. Etching microg

ection was reasonably good. However, the presenting defects had
ower density for AGPI, LGPI, and CGPI, but the concentration was
igh, for FGPI and hence this led to the structural grain boundaries
hich could affect the performance of the devices based on such

GPI crystals.
Dielectric studies are an essential parameter for all ferroelec-

ric crystals to study their exact phase transition temperature. The
ffects of dopants on the phase transition temperature were iden-
ified through dielectric measurements. The measurement details
rovided in the previous paper [15] and the resultant curves are
hown in Fig. 3. The dopants shifted the phase transition tem-
erature slightly, but the shift was not considerable compared
ith the deuteration effect [4]. The dielectric permittivity value

ncreased and reached a maximum at the phase transition temper-
ture after that permittivity decreased continuously to a constant
alue. Dipole ordering appeared at the phase transition tempera-
ure due to the domain nature of the as-grown crystalline specimen.
he sharp peak at the phase transition temperature reveals that the
rown crystal was of the continuous phase transition nature. It was
oted that the permittivity value of CGPI was higher in compari-
on with pure GPI and this value was low for LGPI and FGPI. But, in
he case of AGPI crystal this value was nearly the same as pure GPI.
mong the dopants, the rare-earth influenced (LGPI) effectively the
hase transition temperature compared with others. The optical
ransmittance spectra of pure and doped GPI crystals are shown in
ig. 4. The grown crystals are completely transparent in the entire
V region without any significant absorbance and all the grown
rystals have a cut-off around at 250 nm and the dopants do not
nfluence the absorbance edge. All the crystals have a large trans-

ittance window which is very important and a most desirable

roperty for a variety of optical applications.

Chemical etching is one of the simple and the powerful tool to
nalyze the presenting defect in the as-grown crystalline surfaces
18]. Dislocations easily appear in crystals, especially in the initial
tages of their growth. In the present investigation, chemical etch-
of doped GPI crystals.

ing was carried out using Millipore water (resistivity 18.2 M�) as
etchant at room temperature. Once the damaged surface layer was
removed by means of etching, a fresh surface appeared, which in
turn gave clear etch pits. The etched samples were immediately
examined and their microstructures are shown in Fig. 5. The rec-
tilinear elongated etch patterns (Fig. 5a) and linear steps (Fig. 5d)
were seen in the etching patterns which revealed two-dimensional
(2D) layer growth mechanisms. The well-defined pyramidal shape
hillocks (Fig. 5b) were observed on the dislocation sites which per-
haps were due to the result of some sort of overgrowth in the
etching media or due to the protection of the surface against etch-
ing. Growth spirals (Fig. 5c) observed which have been formed on
the surface of crystals grown at low supersaturation, such a spiral
in fact corresponds to a group of dislocations.

4. Conclusions

Good quality single crystals of pure and doped glycine phosphite
ferroelectric single crystal were grown using low temperature solu-
tion growth method. The structural perfection study of the grown
crystals ascertained the good crystal quality. Rare-earth ions effec-
tively influence the phase transition temperature in comparison
with the other dopants. No modifications were observed from the
optical studies due to the dopants. The appearances of the well-
defined etch pits shows that the grown crystals were affected by
selective type of dislocations.
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